
F1: A FAST AND
PROGRAMMABLE

ACCELERATOR FOR FULLY
HOMOMORPHIC ENCRYPTION

1/12/2022

NICK GENISE

WORK DONE AT SRI INTERNATIONAL

JOINT WITH AXEL FELDMANN, NIKOLA SAMARDZIC, ALEKSANDAR KRASTEV, SRINI DEVADAS, RON DRESLINSKI,
KARIM ELDEFRAWY, CHRISTOPHER PEIKERT, DANIEL SANCHEZ

FUNDED BY DARPADPRIVE

1

FULLY HOMOMORPHIC ENCRYPTION (FHE)

Example, a patient encrypts their symptoms, and the
function is a medical diagnosis.

encrypted

Computer
w/out key!

2

A SHORT HISTORY OF FHE

1978: Rivest, Adleman, and Dertouzospropose “privacy homomorphism”. Ὁὲὧά ᵐ
ὉὲὧὪά .

2009: Gentry finds the first fully homomorphic encryptionscheme. Bases it on a
lattice-based hardness assumption.

2011: Brakerski, Gentry, and Vaikuntanathanpropose an FHE scheme based on the
popular (Ring) Learning with Errors problem.

Today: FHE was 100,000x slower than unencrypted computation, but recent efforts
are speeding this up using application specific integrated circuit (ASICs).

3

(R)LWE

4

LEARNING WITH ERRORS (LWE)

Let ὲᶰᴓbe in the hundreds, ήa function of ὲ, and …be a “small” distribution over
ᴚ .

In 2005, Regev showed the following distribution is pseudorandom assuming worst-
case lattice problems are hard for quantum computers:

╪ȟ╪ȟ▼ Ὡ .

where ╪ᴺלᴚ are uniformly random vectors, Ὡᴺ…, ▼N …

Search version: can you recover ▼given noisy inner-products?

5

LEARNING WITH ERRORS (LWE), ENCRYPTION SCHEME

Key Gen. : ═ᴺᴚ for ά ὲͯὰέὫή , ▼as before and ▄N …

pk = ═ȟ═▼ ▄ ═ȟ╫, sk= ▼.

Enc(m): Sample a random binary vector ◊and return

ct := ◊◄═ȟ◊◄╫ ά= ╬ȟὧ

where is a scaling, decoding factor.

Dec(ct, sk):ὧ ▼◄╬ ά. Can recover message if noise.

Note, linearly-homomorphic! (with growing noise)

6

RING LEARNING WITH ERRORS (RLWE)

Problem with LWE: The public keys are huge! Roughly —‗ὰέὫ‗ bits.

In 2009, partially motivated by Gentry’s FHE breakthrough, Lyubashevsky, Peikert, and
Regev proved a more compact version of LWE is secure assuming the hardness of
worst-case problems on ideal lattices.

Eventual result: efficient lattice-based encryption and a base scheme for FHE!

7

RING LEARNING WITH ERRORS (RLWE), ENCRYPTION
SCHEME

Polynomials: Ὑ ḧ ᴚ ὼȾὼ ρwhere ὔ ς ρπςτ.

…is a distribution over Ὑ by the sampling the same distribution over polynomial

coefficients.

Key Gen: ὥᴺὙ and ίȟὩN …

pk = ὥȟὥίὩ ὥȟὦ, sk= ί.

Enc(m): Sample a random binary polynomial όand return

ct := όὥȟόὦ ά= ὧȟὧ ᶰὙ Ὑ

where is a scaling, decoding factor.

Note, linearly-homomorphic! (with growing noise) 8

BGV

9

ENCRYPTION AND DECRYPTION

A BGV encryption is an RLWE encryption with the message in the “least sig. bits:”

Plaintext space = Ὑ ᴚ ὼȾὼ ρ

Ὁ ά Ὁὲὧά : ÃÔ ὧȟὧ ὥίὴὩάȟὥᶰὙ Ὑ

ὴḺήwith the former prime in ᴚ

Note: ὧ ὧίάέὨή ὴὩά

10

HOMOMORPHIC ADDITION

Ὁ ά Ὁ άᴂ Ὁ ά άᴂ

ὧȟὧ ὧᴂȟὧᴂ ὥ ὥί ὴὩ Ὡ άȟὥ ὥᴂ

Noise magnitude grows by ͯρbit.

11

HOMOMORPHIC MULTIPLICATION

Idea: view through the decryption equation, ὴὩά ὧ ὧίάέὨή. Then,

άά ὴÓÍÁÌÌὧὧ ίὧὧ ὧὧ ίὧὧάέὨή.

Or, ὧὧ, ὧὧ ὧὧ, ὧὧ) encrypts άάᴂunder ρȟίȟί Ȣ

We use an encryption of ίto “Relinear-ize” back to an encryption under ί!

Noise size squares (new noise ὩὩᴂaka double the noise bits)!

12

POLYNOMIALS/DATA TYPES: CRT ON COEFFICIENTS

So far, we’ve ignored the structure of the modulus ή.

In practice, we take ή ήήỄήwhere each ήis a distinct prime of machine-size
(32 or 64 bits).

Then, we can represent a coefficient of a polynomial in Ὑ via the Chinese remainder

theorem: ᴚ ḙᴚ ᴚ Ễ ᴚ via

ὼɴ ᴚȟ ὅὙὝὼ ὼάέὨήȟὼάέὨήȟȣȟὼάέὨή

Addition and multiplication in-parallel!

13

POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIALS

Using the CRT on coefficients allows us to represent Ὑ as

Ὑ ḙὙ Ὑ Ễ Ὑ

What about each Ὑ ᴚ ὼȾὼ ρ?

Do the FFT!

The FFT modulo a prime number is called the NTT (number-theoretic
transform).

14

POLYNOMIALS/DATA TYPES: CRT (NTT) ON POLYNOMIALS
CONT.

If each ήḳράέὨςὔ, then ᴚ contains a multiplicative subgroup of size ςὔwhich

is the roots of ὼ ρ(ςὔ-th roots of unity).

The NTT is the evaluation at all ὔof these points:

ὪᶰὙ , ὔὝὝὪ ὪȟὪ ȟȣȟὪ .

Addition and multiplication over Ὑ in in-parallel!

Just like the FFT, the roots of unity allow us to compute this in time ὕὔẗÌÏÇὔ .

15

CRT AND NTT: MAIN POINTS

CRT allows us to represent ὪᶰὙ as ὒpolynomials in

Ὑ Ὑ Ễ Ὑ Ȣ

NTT allows to represent Ὑ as ᴚ .

This is the “double-CRT” form. It allows polynomial addition and multiplication to be
done in parallel over finite fields.

aǳŎƘ ƻŦ ǘƘŜ ƻǾŜǊƘŜŀŘ ƛƴ όǎƻŦǘǿŀǊŜύ CI9 ƛǎ ŎƻƳǇǳǘƛƴƎ ŦƻǊǿŀǊŘ ŀƴŘ ƛƴǾŜǊǎŜ b¢¢ΩǎΦ
This is because most operations require us to switch between NTT form and
coefficient form.

16

PLAINTEXT SLOTS

The same idea applies to ὴ. That is, if ὴḳράέὨςὔ, then the NTT can be applied to
the plaintext space Ὑ ḙᴚ .

We call this a “packed” ciphertext since each ct can encrypt ὔelements in ᴚ . Each

plaintext element is in a plaintext “slot.”

For large computations, we need cross-talk between slots. This is done by signed
permutations (automorphisms) on the ct polynomials. Note, these automorphisms are
transitive on the slots.

„ὥίὴὩά „ὥ„ί ὴ„Ὡ „ά .

Encryption under the wrong key! Need to key-switch again :/.

17

GENERAL CASE FOR PLAINTEXT SLOTS, POWER OF
TWO DIMENSION

Let ὴbe a prime not equal to ς. Then ὼ ρfactors into irreducible
polynomials of the same degree, d,over the finite field ᴚ !

ὼ ρ

ᶰ ȟȣȟ

Ὂὼ

The degree Ὠis the smallest number s.t.ὴḳράέὨςὲȢThen ςὲ ὰὨ.

18

WHAT ARE THE GENERAL SLOTS?
Our old friend, the Chinese Remainder Theorem, gives us the answer:

Ὑ
ᴚ ὼ

ὼ ρ
ḙ
ᴚ ὼ

Ὂ ὼ
ṧ
ᴚ ὼ

Ὂ ὼ
ṧỄṧ

ᴚ ὼ

Ὂὼ
ḙὋὊὴ

This map is given by evaluating a polynomial in Ὑ by a root of each polynomial. Let
– be a root to Ὂ ὼ and ‖be distinct coset representatives of ᴚᶻȾὴ.

Ὢὼᵐ Ὢ– ȟὪ– ȟȣȟὪ–

This can be done with a DFT over a finite field!

19

COMPARISON: NTT V.S. GENERAL
NTT: When ήḳράέὨςὲ, ὼ ρ Бᶰ ȟȟȣȟ ὼ splits completely into

degree-1 factors. Then,

Ὑ
ᴚ ὼ

ὼ ρ
ḙ
ᴚ ὼ

ὼ
ṧ
ᴚ ὼ

ὼ
ṧỄṧ

ᴚ ὼ

ὼ
ḙᴚ

General: When ὴis a prime not equal to 2, ὼ ρ Бᶰ ȟȣȟὊὼ factors into

same-degree irr. polynomials and

Ὑ
ᴚ ὼ

ὼ ρ
ḙ
ᴚ ὼ

Ὂ ὼ
ṧ
ᴚ ὼ

Ὂ ὼ
ṧỄṧ

ᴚ ὼ

Ὂὼ
ḙὋὊὴ

20

PLAINTEXT SLOTS: MAIN POINTS

We apply signed permutations to enable plaintext “cross-talk.” Usuallywe
pick ‖so these are rotations on the slots.

After each permutation, we need to do a key-switching operation (usually
represented as a matrix-vector multiply).

Key-switching cannot by done in NTT form (evaluation rep.).

21

THE FHEINTERFACE (SERVER SIDE)

Ciphertext Add: Add the polynomials άέὨή, ὧȟὧ ὧᴂȟὧᴂ.

Ciphertext Multiply : Compute ὧὧ, ὧὧ ὧὧ, ὧὧ) then relinearizeto ὧᴂᴂȟὧᴂᴂ.

Ciphertext Rotate: Compute „ὧ ȟ„ὧ then key-switch.

22

ACCELERATING FHE WITH ASICS (F1)

23

CHALLENGES TO
ACCELERATING

You want a chip that:

1. stores multiple ciphertexts and hints,

2. accelerates FHE operations like ADD, MULT, and
ROTATE,

3. reduces bottlenecks to data-movement or high re-use,

4. with few functional units with high throughput.

24

OVERVIEW OF F1

Small Design: 151 άά

Large scratch pad: φτὓὄ

Compute clusters with FUs for NTT,
mod mult, mod add, and
automorphism.

Each FU operates on an RNS
polynomial, or a (1K-16K) vector of 24-
bit values.

Note, for ὔ ρφὑ, ὒ ρφ, then a ct
is ςὓὄ. (A KSH is σςὓὄ.)

25

NTT-FRIENDLY MONTGOMERY MULTIPLIERS

Recall that the RNS moduli, ή, are of the form ήḳράέὨςὔ.

We use a Word-Level Montgomery multiplier, word size ~11 bits, for our modular multipliers.

This algorithm was initially used by Can Mert, Ozturk, and Savasin accelerating NTTs using
FPGAs. (eprint)

We modify it to ήs.t.ήḳ ράέὨς . This allows us to remove one multiplier and save area
and power.

26

https://eprint.iacr.org/2019/109.pdf

4 STEP NTT

Recall, the NTT is an FFT for modular arithmetic. Given ὪᶰὙȾήὙ, compute

ὔὝὝὪ ὪȟὪ ȟȣȟὪ

where is a primitive ςὔth root of unity mod ή.

We do both the forward and inverse NTT with the same hardware. This is by using a 4 Step NTT and mixing DIT and DIF
butterflies. Our NTT is only for Ὁ ρςψelements. So, we reduce all NTT to 128-point NTTs.

27

AUTOMORPHISM FUNCTIONAL UNITS

Each automorphism is „Ὢὼ ᵐὪὼ for some Ὥɴ ᴚᶻ (odd).

The automorphisms form a group and are generated by Ὥ ρand Ὥ σ.

Standard hardware approaches fail! A general ρφὑpermutation is too complex.

Our functional unit reduces to how an automorphism acts on a degree Ὁ ρςψsubfield and the basis. For
example, in ὔ ςυφ, we have Ὢὼ Ὢὼ ὼὪὼ . (Basis is ρȟὼ here.)

„Ὢὼ „Ὢὼ „ὼ„Ὢὼ

28

AUTOMORPHISM FUNCTIONAL UNIT

29

„Ὢὼ „Ὢὼ „ὼ„Ὢὼ

PERFORMANCE AND FUTURE WORK

F1 Accelerates FHE programs by compared to software solutions run on a standard
CPU.

Future work: accelerate more complex FHE operations (e.g., key-switching), focus on bootstrapping, and
accelerate FHEW/TFHE schemes. (F1 is best used on BGV, BFV, and CKKS.)

30

THANK YOU!

31

